X
This website collects cookies to deliver better user experience. We collect cookies to analyze our website traffic and performance; we never collect any personal data. This website uses cookies to ensure you get the best experience on our website. By continuing to use this website, you consent to our use of these cookies.

Mathematics

We recognize that mathematics is a language shared by all civilizations and all populations regardless of culture, religion, or gender, and our programs are designed to improve every student's quantitative literacy. We aim to foster strong critical thinking and mathematical reasoning in our students, with the goal of teaching them to view the world through a mathematical lens.

Requirements. In Grades 9-12, three years of math, through the 11th grade and including Algebra II, are required for a York diploma. York’s requirement meets University of California admissions requirements, which include a provision that students must complete a geometry course. Any student who wishes to take a credit math course over the summer must receive permission from the Math Department Chair and the Director of Teaching & Learning.
  • Algebra I

    Algebra is the base upon which nearly all of mathematics is built; it is a leap from arithmetic to abstract, defining the rules for the study of mathematical symbols and how to manipulate them. Taken seriously, this is every student’s first foray into quantitative thinking. Students will work to develop fluency in the language and application of algebraic definitions and procedures, using those skills to solve for unknowns in increasingly complex equations. Emphasis is placed on developing student understanding of linear relationships and their applications to the real world.
  • Algebra II

    Students will study a variety of different functions (such as quadratic, exponential, rational, trigonometric, etc.) learning their properties and graphical behavior. They’ll discover how each function relates to practical applications, putting theory into practice via math labs. Although graphing calculators are incorporated to enhance the curriculum, the emphasis remains on the thought process and on understanding mathematical concepts.
  • AP Calculus AB

    Students will continue their understanding of the mathematical contexts and concepts within calculus, namely the three big ideas of limits, derivatives, and integrals, with the addition of a fourth: series. The depth and breadth is equivalent to a second year of college-level calculus. The course will include all of the concepts and techniques that appear on the AP Calculus BC exam, and all students enrolled in the course will be expected to take this exam in May.
  • AP Calculus BC

    Students will continue their understanding of the mathematical contexts and concepts within calculus, namely the three big ideas of limits, derivatives, and integrals, with the addition of a fourth: series. The depth and breadth is equivalent to a second year of college-level calculus. Specifically, this course will focus on drawing connections between verbal, graphical, numerical, and analytic representations of functions. This course is designed to assist students in developing strategies and techniques to solve a diverse set of application problems, and then evaluate the reasonableness of solutions. Students will be required to use proper notation and will be able to communicate effectively with their peers and with the mathematical community. Technology will be used regularly throughout the course, with a special emphasis on graphing calculators, as a way of investigating and analyzing functions to help students draw conclusions that would have been impossible or too time consuming without supporting technology. The course will include all of the concepts and techniques that appear on the AP Calculus BC exam, and all students enrolled in the course will be expected to take this exam in May. Testing throughout the year will be designed to help prepare the students for this exam.
  • AP Statistics

    AP Statistics introduces students to the major concepts and tools for collecting, analyzing, and drawing conclusions from data. Examples are drawn from applications in the natural and social sciences. Students collaborate with their classmates to learn statistics by doing statistics via in-class activities and simulations, computer labs, and projects. Students will master four broad conceptual themes: (1) Exploring Data (analysis of data through the use of graphical and numerical techniques to study patterns and departures from patterns); (2) Sampling and Experimentation (planning and conducting a study); (3) Anticipating Patterns (exploring random phenomena using probability and simulation for anticipating what the distribution of data should look like under a given model); (4) Statistical Inference (estimating population parameters and testing hypotheses).

    Statistics and AP Statistics meet concurrently and cover the same content at the same pace. The main differences between these courses are that AP Statistics students also complete several projects and take the AP Exam.
  • Calculus

    This course meets concurrently with AP Calculus AB and introduces students to the basic concepts of differential and integral calculus. It is roughly equivalent to one semester of college calculus. Although this course is not aimed at preparing students for the AP exam in Calculus AB, the topics covered will be very similar, but the assignments are shorter and the tests are easier than the Calculus AB class.
  • Geometry

    Geometry is the study of shape, and draws on the right side of the brain. The subject appeals to visual thinkers who might otherwise cringe at its logic, though many students love geometry precisely because it is so logical. Students learn important definitions, postulates, and theorems connected with Euclidean geometry and apply them to solve geometrical application problems. A balance is sought between an intuitive understanding of what is true, and the need for a thorough, careful, deductive reasoning about one’s perceptions. Students learn how to order their arguments in clear, precise language when writing their proofs of geometry theorems. Students will also develop spatial skills in two and three dimensions, and review their algebra skills throughout the course. Students work on group projects and utilize computer exploration.
  • Math Modeling

    Offered in alternating years
    The overall goal of this course is to enable students to build mathematical models of real-world systems, analyze them, and make predictions about the behavior of these systems. A variety of modeling techniques will be discussed with examples taken from physics, biology, chemistry, economics, social sciences, and other fields. Mathematical modeling uses graphical, numerical, symbolic, and other techniques to describe and explore real-world data and phenomena. Emphasis is on the use of elementary functions to investigate and analyze applied problems and questions, on the use of appropriate supporting technology (e.g., Microsoft Excel or Google Sheets, Python, and other software or programming languages), and on the effective communication of quantitative concepts and results through relevant projects and presentations. This course is not intended to be a prerequisite for Calculus, though it will introduce and help students understand the basic topics of differential and integral calculus through application. Likewise, the class can be a math elective for students seeking an additional math class, for those hoping to solidify math concepts through modeling applications, or both.

  • Pre-Calculus

    This course combines advanced Algebra II skills with trigonometry, data analysis, vectors, and an introduction to Calculus. In addition to strengthening Algebra II skills and problem-solving strategies, students learn to apply concepts to real-world problems through mathematical modeling. While the emphasis is on honing algebraic and graphical analysis skills, the course makes extensive use of the graphing calculator. Many of the same topics will be covered as in the Pre-calculus Honors class, but not as rigorously and at a different pace.
  • Pre-Calculus Honors

    Pre-calculus Honors reinforces and expands upon the concepts encountered in Algebra II in order to prepare students for success in Calculus. Students will learn how to describe both new and already familiar functions verbally, algebraically, graphically, and numerically. Students also will learn how to transform these functions in order to model real-world data. In addition, students become familiar with other coordinate systems and with the use of vectors to model physical quantities. Experience with proofs will strengthen students’ ability to make conjectures, construct logical arguments, and justify their reasoning. Pre-calculus Honors covers Pre-calculus topics in greater depth, and its scope is much broader and includes numerous abstract and challenging enrichment topics. As a result, Pre-calculus Honors is intended for students who have a strong interest and aptitude for math, and who are ready, willing, and able to do the work necessary to tackle demanding problems at an accelerated pace.

Faculty

  • Photo of Jeff Hanna
    Jeff Hanna
    Math/Science Department Chair
    Bio
  • Photo of Pam Durkee
    Pam Durkee
    Math/Science
    Bio
  • Photo of Scot Johnson
    Scot Johnson
    Math/Science; 11th Grade Dean
    Bio
  • Photo of Kim Kiest
    Kim Kiest
    Math/Science; 10th Grade Dean
    Bio
  • Photo of June Trachsel
    June Trachsel
    Math/Science
    Bio
  • Photo of Kande Williston
    Kande Williston
    Math/Science
    Bio

York School

9501 York Road
Monterey, CA 93940
Phone: 831-372-7338
We inspire and prepare a diverse community of creative, independent thinkers.
Since 1959, York School has created an exceptional college-prep experience for our youth: inspiring them to develop intellectual curiosity; challenging them to create and try new things; and preparing them to be passionate contributors in college and in life.